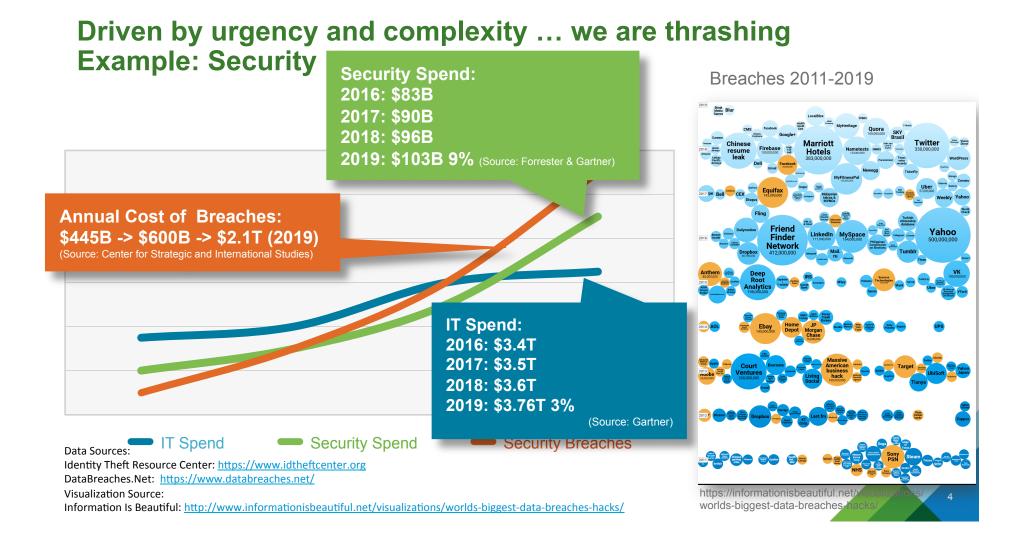

The Role of the Hosting Platform in Facilitating Computing and Network Innovation

Reigning in Complexity

Dennis R Moreau, PhD Cybersecurity Information Architecture VMware, Office of the CTO dmoreau@vmware.com

Hyper-scalers by CAPEX: Unique Scale, Distribution, Scope ...


Cloud Outages 2019

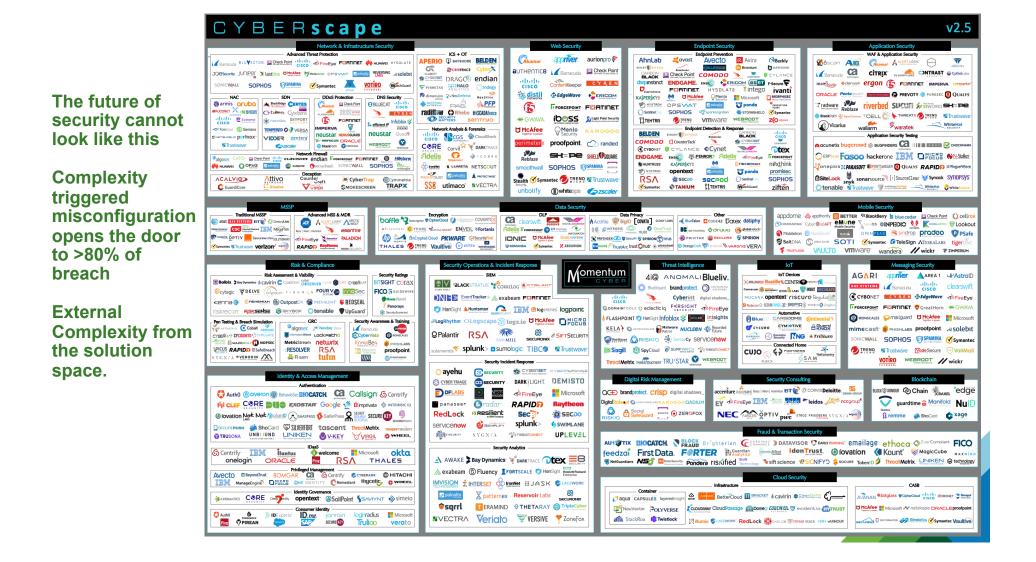
Complexity THE Cloud Management Problem

- March 13: Facebook
 - Cause: Server Configuration Change
- June 2: Google Cloud Platform
 - Cause: Routine Configuration Change (wrong servers)
- June 24: Version
 - Cause: BGP Routing Leak
- · July 2: Cloudflare
 - Cause: Bad Software Deployment
- July 3-4: Facebook, Twitter, Apple
 - Cause: Routine Maintenance Operation
- July 11: Twitter
 - Cause: Inconsistent internal System Change
- August 31: AWS
 - Cause: Server Resilience/Recovery Misconfiguration
- *March 23: AWS Capital One
 - Cause: Firewall Mis-configuration

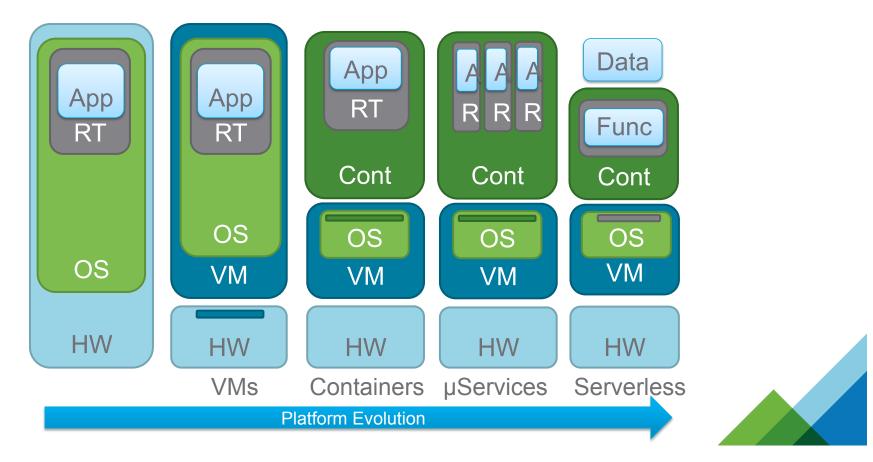
http://techgenix.com/2019-website-outages/

Increasing complexity

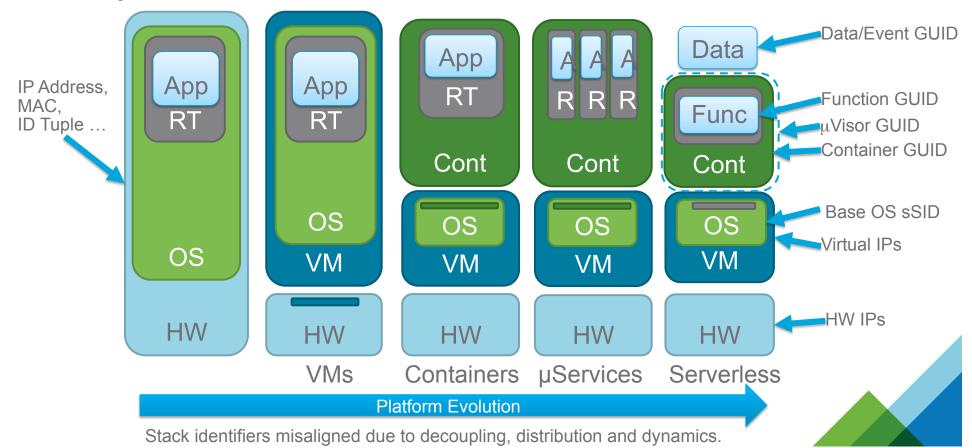
Separability??.



External Complexity from the problem space... on clients and in DCs


Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	CredentialAccess	Discovery	Lateral Movement	Collection	Exfiltration	Command and Contro
Valid Accounts		Scheduled Task		XSL Script Processing	Network Sniffing		Windows Remote	Video Capture	Scheduled Transfer	Web Service
Trusted Relationship	Tr	ap Process		Injection	ection Two-Factor Authentication		Management	Screen Capture	Exfiltration Over	Uncommonly Used Port
Supply Chain Compromise	LSASS	Driver Extra Window N		Memory Injection	Interception	System Service Discovery	Third-party Software	Man in the Browser	Physical Medium	Standard Non-Applicatio
Spearphishing via Service	Local Job :	Scheduling Bypass User A		ccount Control	Private Keys	System Owner/User	Taint Shared Content	Input Capture	Exfiltration Over Command	Layer Protocol
Spearphishing Link	Laun	nchctl Access Token		Manipulation	Password Filter DLL	Discovery	SSH Hijacking	Email Collection	and Control Channel	Standard Application
Spearphishing Attachment	XSL Script Processing	Valid Accounts			LLMNR/NBT-NS Poisoning	System Network	Shared Webroot	Data Staged	Data Transfer Size Limits	Layer Protocol
Replication Through	Windows Remote		Plist Modification		Keychain	Configuration Discovery	Replication Through	Data from Removable Media	Data Encrypted	Remote Access Tools
Removable Media	Management	Ir	Image File Execution Options Injection		Kerberoasting	Security Software Discovery	Removable Media	Data from Network	Data Compressed	Port Knocking
Exploit Public-Facing	User Execution	DLL Search Order Hijacking			Input Prompt	Remote System Discovery	Remote File Copy	Shared Drive	Automated Exfiltration	Multilayer Encryption
Application	Trusted Developer Utilities	Web	Shell	Web Service	Input Capture	Query Registry	Remote Desktop Protocol	Data from Information	Exfiltration Over Other	Multiband Communicat
Hardware Additions	Third-party Software	Startu	o Items	Trusted Developer Utilities	Hooking	Process Discovery	Pass the Ticket	Repositories	Network Medium	Multi-Stage Channels
Drive-by Compromise	Space after Filename	Setuid a	nd Setgid	Timestomp	Forced Authentication	Permission Groups Discovery	Pass the Hash	Automated Collection	Exfiltration Over	Multi-hop Proxy
Sign Procession Service B R R R R R R R R R R R R R R R R R R	Source	Service Registry Permissions Weakness		Template Injection	Exploitation for	Peripheral Device Discovery	Logon Scripts	Audio Capture	Alternative Protocol	Fallback Channels
	Signed Script Port M		onitors	Space after Filename	Credential Access	Password Policy Discovery	Exploitation of	Data from Local System		Domain Fronting
	Proxy Execution	Path Inte	erception	Software Packing	Credentials in Files	Network Share Discovery	Remote Services	Clipboard Data		Data Obfuscation
	Service Execution	New Service		SIP and Trust	Credential Dumping	Network Service Scanning	Application Deployment			Data Encoding
	Scripting	Launch Daemon		Provider Hijacking	Brute Force	File and Directory Discovery	Software			Custom Cryptographi
	Rundll32	Hooking		Signed Binary	nary Bash History	Browser Bookmark Discovery	Windows Admin Shares			Protocol
	Regsvr32	File System Perm	issions Weakness	Proxy Execution	Account Manipulation	Application Window	Remote Services			Connection Proxy
	Regsvcs/Regasm	Dylib Hijacking		Rundll32	Securityd Memory	Discovery	Distributed Component			Communication Throu
	PowerShell	Application Shimming		Rootkit	Credentials in Registry	System Network	Object Model			Removable Media
	Mshta	AppInit DLLs		Regsvr32		Connections Discovery	AppleScript			Standard Cryptograph
	InstallUtil	AppCert DLLs		Regsvcs/Regasm		System Information				Protocol
	Graphical User Interface	Accessibility Features		Redundant Access		Discovery				Remote File Copy
	Exploitation for	Winlogon Helper DLL	Sudo Caching	Process Hollowing]	Account Discovery]			Custom Command an
	Client Execution	Windows Management	Sudo	Process Doppelganging]					Control Protocol
	Execution through API	Instrumentation	SID-History Injection	Port Knocking						Commonly Used Port
	Dynamic Data Exchange	Event Subscription	Exploitation for	Obfuscated Files						
	Control Panel Items	SIR and Trust Brouder	Privilege Escalation	or Information						

Persistence	Privilege Escalation	Defense Evasion	Credential / ccess	Discovery	Lateral Movement	Execution	Collection	Exfiltration	Command and Control
Accessibility Features	Accessibility Features	Binary Padding	Brute Force	Account Discovery	Application Deployment	Command-Line	Automated Collection	Automated Exfiltration	Commonly Used Port
AppInit DLLs	AppInit DLLs	Bypass User Account Control	Credential Dumping	Application Window Discovery	Exploitation of Vulnerability	Execution through API	Clipboard Data	Data Compressed	Communication Through Removable Media
Basic Input/Output System	Bypass User Account Control	Codewigning	Credential Manipulation	File and Directory Discovery	Logon Scripts	Graphical User Interface	Data Staged	Data Encrypted	Custom Command and Control Protocol
Bootkit	DLL Injection	Component Firmware	Credentials in Files	Local Network Configuration Discovery	Pass the Hath	PowerShell	Data from Local System	outa Transfer Size Limits	Custom Cryptographic Protocol
Change Default File Handlers	DLL Search Order Hijacking	DLL Injection	Exploitation of	Local Network Connection Discovery	Pass the Ticket	Process Hollowing		Exfiltration Over Alternative Protocol	Data Obfuscation
Component Firmware	Exploitation of Vulnerability	DLL Search Ord - Hijacking	Input Capture	Network Sen ice Scanning	Remote Dest op Protocol	Rundl132		Exfiltration of er Command and Control Channel	Fallback Channels
DLL Search Order Hijacking	Legitimate Cr. dentials	D'z Side-Loading	Network Sniffing	Peripheral Device Discovery	Remote File Copy	Scheduled Tesk	Email Collection	Exfiltration Over Other Network Medium	Multi-Stage Channels
Hypervisor	Local Port Minitor	Disabling Security Tools		Permission Groups Discovery	Remote Servites	Service Execution	Input Capture	Extinued to Construct Anysical Medium	Multiband Communication
Legitimate Credentials	New Service	Exploitation of Vulnerability		Process Discovery	Replication Through Removable Media	Third-party oftware	Screen Capture	Scheduled Transfer	MultilayerEncryption
		DLI	r Removal on Host L Side-Loading DCShadow © 2019	The MITRE Corporation. All rights reserved.		limited. Case Number 15-1288.	MITRE		6



... Applications stacks are more decoupled, distributed and dynamic

...consequently identifiers, structures and behaviors more complex.

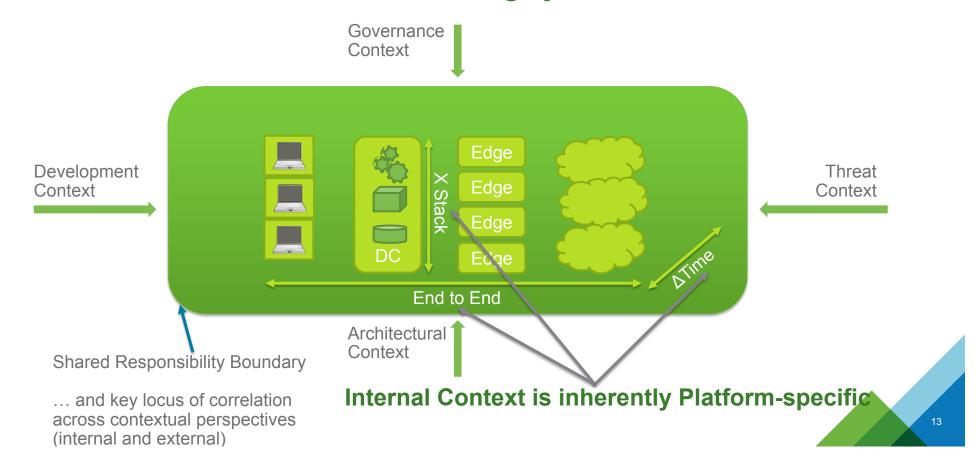
Internal Platform complexity has grown too ...

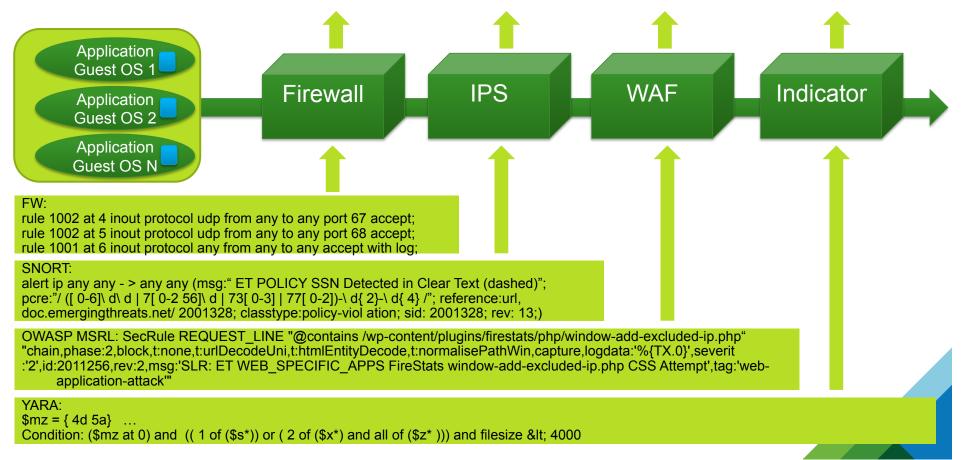
Compute

- Server Isolation, Processor Virtualization, Container Isolation Process & Namespace, SM
- White-Listing, Anti-Virus, Endpoint Detection & Response
- TPMs (Titan, Intel, ...), FPGAs, GPUs, Enclaves, ASLR, Control Flow Integrity, Smart NICs
- Network
 - VLANs, VPNs, Micro-segments
 - Firewalls, IPSs, WAFs, Sandboxes
 - Application Gateways, API Microgateways (JSON/APIs/gRPC), Layers (Functions)
- Storage
 - Volumes
 - ACLs
 - Encryption
- Composite Abstractions
 - PODs, STNs, VPCs, ASEs,...
- Future More Dynamics (Moving Target), Encryption, Distribution (MPC, CryptoLedgers, ...)

But none of these is ever perfect in implementation, or perfectly managed ...

Reference: Engineering Trustworthy Systems, O. Sami Saydjari, 2018




Context (Internal and External) enlighten a way forward

External Intentional Context is largely invariant over Platforms

Example: Security policy complexity

Example: End to End External Contextual Alignment Network Policy informed by endpoint context (e.g. Vuln(App(OS(SSID?)))

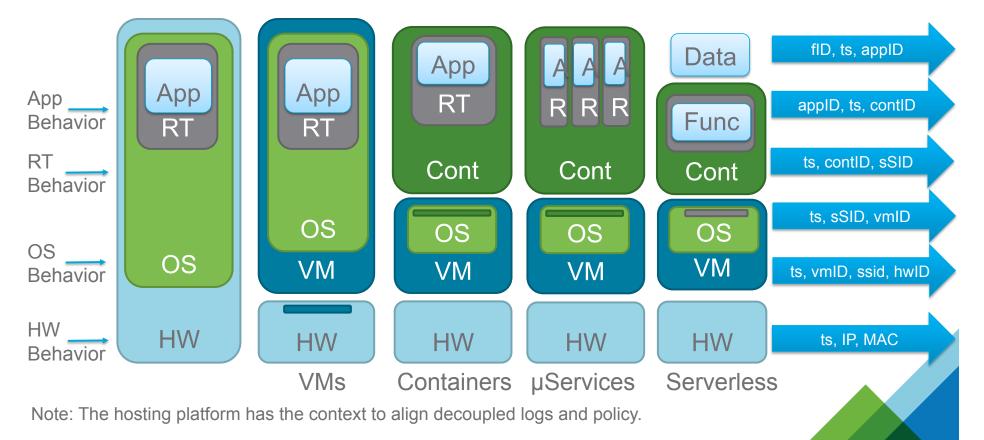
Context for Aligning Policy: App Intended Behavior (app)

- DevOps & Testing RAML, Open API, API Blueprints
- IoT IETF MUD (YANG descriptions)
- Integration HL7 FIHR Integration Policy, API Lifecycle Management Facilities

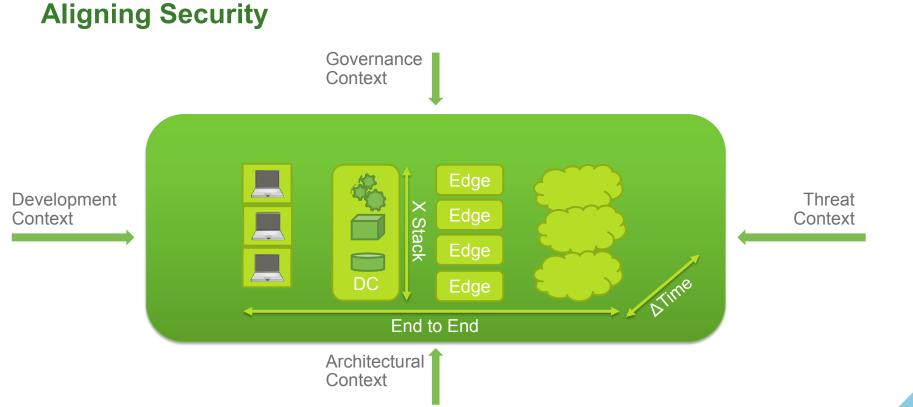
CVE

- API Micro-gateways Google Apigee (Swagger), Salesforce Mulesoft (RAML), AWS API Gateways, Tyk, …)
- Structure/Dependency OAM (Microsoft), TOSCA, Blueprints, Accelerators, Zachmann (audit), Helm, ... VMware VRA Blueprints

D' D" P'''

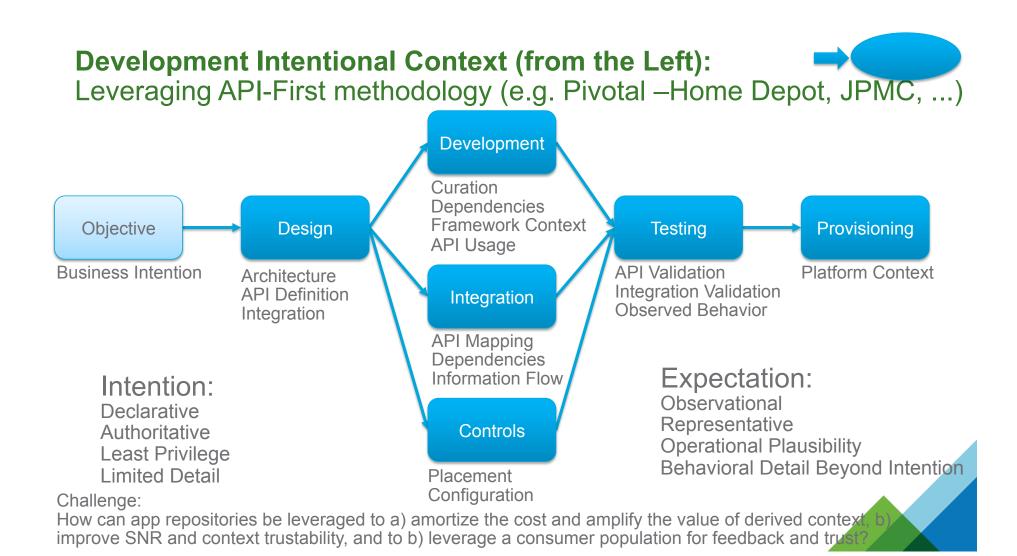

| ///

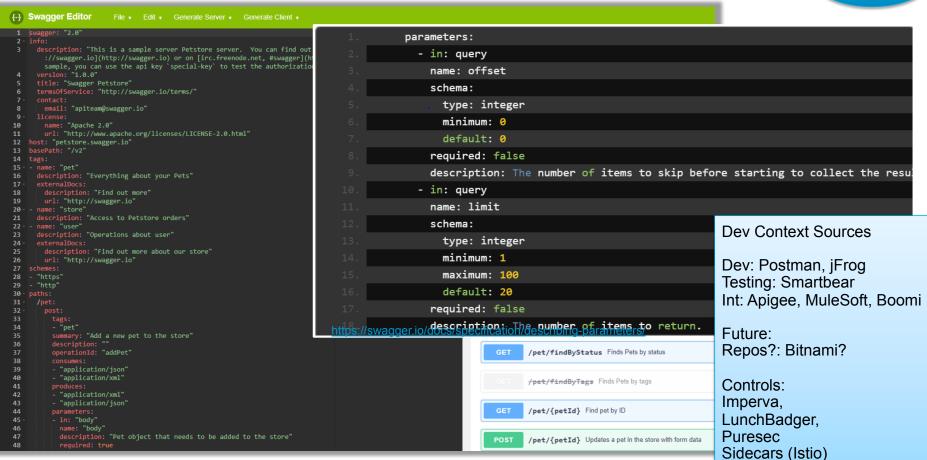
• Reference Architectures – AWS Quick Starts, Azure Blueprints, VMware VVD


Service

Example: Cross Stack Internal Contextual Alignment, ...

Context (Internal and External) Where does it come from?



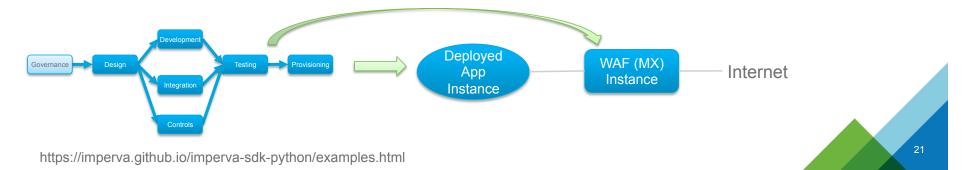

Policy at this boundary has different authors, with different objectives, different change rhythms ... the Platform is where these intersect

Platform-enabled Context:

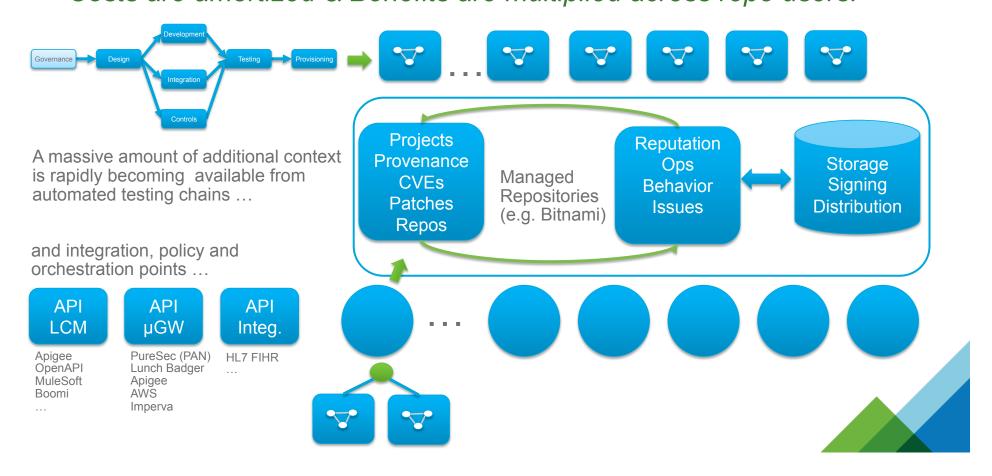
Context: Development Context: Intended Behavior

WAF Example Imperva Ingestion of Swagger for SecureSphere

import imperva_sdk from imperva_sdk.SwaggerJsonFile import SwaggerJsonFile import json


Connect to MX mx = imperva_sdk.MxConnection("10.0.0.1", Password="password")

Load swagger file as JSON swagger_json = SwaggerJsonFile('swagger_file.json')


Select Web Application
app = mx.get_web_application(Name="app", Site="site", ServerGroup="sg", WebService="ws")

Apply swagger as profile app.update_profile(SwaggerJson=swagger_json)

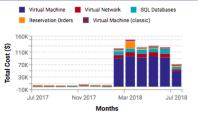
Log out mx.logout()

The Context Economy of Repositories: OSS & 3rd Party Costs are amortized & Benefits are multiplied across repo users.

Architectural Context: Compliance Reference Models Google AWS (34 Pages) Azure (19 Pages) (STN + Service Controls) Attacker Bucket SQL storage.googleapis.com ি X Kubernete • d.googleanis.co Customer Bucket C

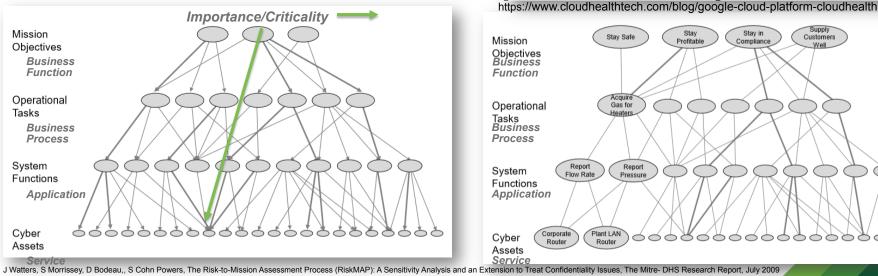
https://aws.amazon.com/quickstart/architecture/ accelerator-pci/

https://p16.praetorian.com/blog/cloud-dataexfiltration-via-gcp-storage-buckets-and-how-toprevent-it


E Cloud Firewall Rule

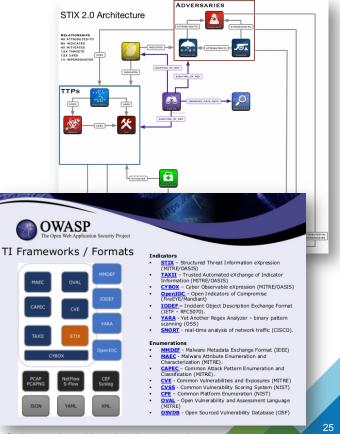
VMware VVD+ – Reference Arch ...

- Audit once, comply many costs amortized, benefits multiplied ...
- Creates a community of highly normalized argumentation learn/detect here ... protect everywhere else
- Control topology provides actionability, guardrails, and semantics to telemetry
- Challenge: How to bring new controls (dynamics, distribution, AR ...) to this SD but conventional model. System security argumentation beyond the compliance reference architecture -> system posture Accommodate "tense" of tagging – PCI classification vs PCI qualification vs PCI validation



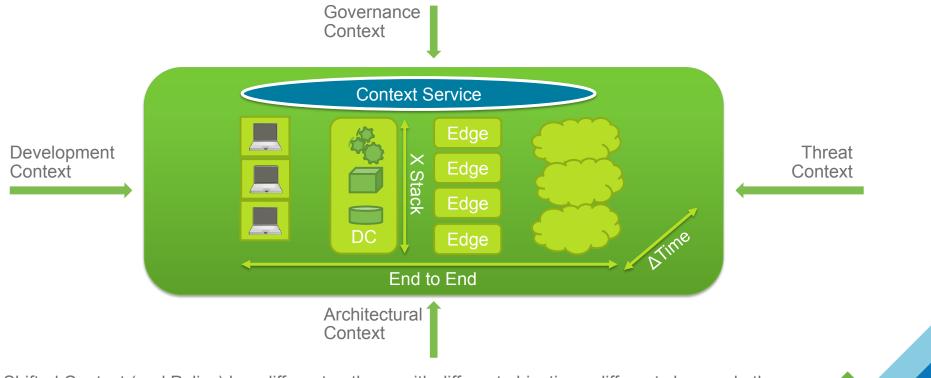
TARE BRIME CONTRACTOR & CONTINUE BALLY OFFICE

0000


Risk = Impact (Criticality) * Exploitability (CVEb) * Probability (CVEt)

Challenge: There can is no algebra for risk, due to coupling over intimately & implicitly shared resources. How then can we connect labeled service criticality to underlying component logs/alerts/forensics severity?

Threat Essential Context When hygiene fails. Connecting the dots from indications to exploit


Description Summary

- Attack_Execution_Flow
 - Attack_Phase^{1..3} (Name(Explore, Experiment, Exploit))
 - Attack_Step^{1..*}
 - Attack_Step_Title
 - Attack_Step_Description
 - Attack_Step_Technique 0..*
 - Attack_Step_Technique_Description
 - Leveraged_Attack_Patterns
 - Relevant_Attack_Surface_Elements
 - Observables^{0..*}
 - Environments
 - Indicator^{0.*} (ID, Type(Positive, Failure, Inconclusive))
 - Indicator_Description
 - Relevant_Attack_Surface_Elements
 - Environments
 - Outcome^{0..*} (ID, Type(Success, Failure, Inconclusive))
 - Outcome_Description
 - Relevant_Attack_Surface_Elements
 - Observables^{0..*}
 - Environments
 - Security Control^{0.*} (ID, Type(Detective, Corrective, Preventative))
 - Security_Control_Description
 - Relevant_Attack_Surface_Elements
 - Observables^{0..*}
 - Environments
 - Observables^{0..*}

https://image.slidesharecdn.com/attackiseasyletstalkdefencev3-151026104559-lva1-app6891/95/bucharest-attack-is-easy-lets-talk-defence-20-638.jpg?cb=1445856555

Challenge: Behaviors on SDI are less representable by normal indicators due to decoupling & dynamics. Need behavior abstract

26

Shifted Context (and Policy) has different authors, with different objectives, different change rhythms ... the Platform is where these intersect

Takeaways:

- At the context at the platform boundary between the External consumption of the and the Internal presentation is very useful
- This boundary is a disciplinary bridge across concerns.
- The modern hosting platform can automate internal context... conventionally difficult to construct
 - End to End
 - Cross Stack
 - Across Time
- The modern hosting platform can collect, protect and distribute external context (to entire management/ security portfolios
- Platform providers host vibrant innovation ecosystems, partnerships, residencies, internships and collaboration opportunities.

Emerging Research Challenges at the Platform Boundary

- Platform enlightened AI toward more interpretable, explainable, actionable and therefore trustable intelligence and automation.
 - Purely statistical, regression based and ML techniques don't leverage the intentional structures and behavior, constraints, ... resulting in adversarial, supply chain, explain-ability, actionability and trust-ability challenges.
 - Ex. XAI and 3rd Wave AI momentum: Causality models, embedded ML, intentional guardrails, ...
- With richer sets of context over development lifecycles, we need models that can capture and support reasoning over intentional, expected and observed behaviors.
 - Existing tagging/labeling models are hobbled by ambiguity and semantic mismatches across disciplinary and lifecycle boundaries.
 - Ex. OASIS OCA (Security Portfolio), Mitre System Argumentation efforts
- More expressive policy logics/languages: As we shift testing and security "left", we increasingly cultivate more and different policy authors, who have different objectives and act in different rhythms.
 - First order policy languages require completeness and consistency that don't exist across diverse sources of dynamic policy. We need more expressive and embedded logic schemes that can provide useful inference in the face of incompleteness, inconsistency and evolutionary change.
 - Ex. AWS AR, Defeasible Logics, ...
- With the increasing use of GPUs, TPUs, FPGAs, ... as processor extensions and in shared resource pools, we extended trusted execution and attestation approaches that are less brittle (than hash extension) and leverage the isolation and dynamics of modern platforms.
 - Example: Trusted Blue line/Green line code models.
- As we face the emergence of Quantum computation, and the intrinsic uncertainties over post-quantum crypto techniques, a level of crypto agility and/or resilience will be needed. What are new abstractions might make migration of crypto technologies, less disruptive to application and services.

28

- Example: Microsoft Post-Quantum Crypto VPNs

VRG Active Research Areas (Frequently 1-2 Researchers + Research Interns)

pivots

https://research.vmware.com/projects

Active Research Areas

Anomaly detection algorithms that

intuitive, rigorous and scalable.

Anomaly Detection

B^{ϵ} buffer

 B^{ϵ}

BetrFS

Design

operational...

A right-optimized write-optimized file system

Data center Network Topology

Designing performant, practical data

Networking for the 99%

Cache-Adaptive Algorithms

Tools for analyzing algorithm performance in the real world

CloudCast

CloudCast is a world-wide and expandable measurements and analysis system, co...

NR A method to implement any concurrent data structure.

P4: Programmable data-planes

center networks for cost and

RADE

Resource-efficient supervised anomaly detection framework that reduces memory...

This projects studies "non-hyperscalar"

networks, their features and pain poi...

Scalable and Precise Stream Processing

Algorithms and data structures for realtime processing of streams that are t... Data center network stack that can

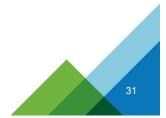
Towards Predictable Low Latency Networks

P4

Data center network stack that can provide predictable low latency

Opportunities for Academic Research with VMware

Faculty Research Collaborations


https://www.vmware.com/company/research/faculty-programs.html#research

Faculty Research Collaborations

VMware is committed to sponsoring academic research in areas of importance to the future of computing. Our support for faculty enables graduate student researchers and post-docs, and helps to cover the expenses involved in developing new technology in a university setting. Some recent faculty research collaborations include:

- Arizona State University
- Bar Ilan University
- Brown University
- Carnegie Mellon University
- Cornell University
- École Polytechnique Fédérale de Lausanne (EPFL)
- ETH Zürich
- Georgia Institute of Technology
- Imperial College London
- Indian Institute of Technology, Delhi
- Massachusetts Institute of Technology
- · Politecnico di Torino
- Princeton University
- Stanford University

- Technion
- Tel Aviv University
- Texas A&M University
- University College London
- University of California, Berkeley
- University of California, Santa Cruz
- University of Cambridge
- University of Colorado at Boulder
- University of North Carolina at Chapel Hill
- University of Texas at Austin
- University of Texas at Dallas
- University of Utah
- University of Washington
- University of Wisconsin at Madison

Systems Research Awards

https://www.vmware.com/company/research/faculty-programs.html#system

Tiark Rompf is an Assistant Professor of Computer Science at Purdue University. Professor Rompf received the 2018 VMware Systems Research Award. He is recognized for radically new approaches to performance- and safetycritical systems, in particular through rethinking the role and relationship between high-level and low-level languages. His systems-oriented approach is illustrated well by his far-ranging explorations of lightweight modular staging (LMS), a platform and methodology for enabling run-time code generation.

Tim Kraska is an Associate Professor of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology (MIT). Professor Kraska received the 2017 VMware Systems Research Award. He has been widely recognized for his early work on hybrid human-machine data management. On the systems side, his work includes a pioneering reference architecture (CrowdDB) for hybrid crowdsourced queries. He has continued to role-model a style of holistic systems treatment in his early research by formulating and tackling research problems that together represent a powerful new vision for the future of database systems.

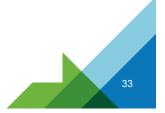
Matei Zaharia is an Assistant Professor of Computer Science at Stanford University. Professor Zaharia received the 2016 VMware Systems Research Award. His accomplishments as a young researcher include developing the wellknown and widely used open source projects Apache Spark, Apache Mesos, and Tachyon (now Alluxio), Zaharia's academic work has received thousands of clations, and his software is being used by thousands of developers worldwide.

Early Career Faculty Grants and Scholar-in-Residence Program

https://www.vmware.com/company/research/faculty-programs.html#scholar

Early Career Faculty Grants

The Early Career Faculty Grant program is intended to recognize the next generation of exceptional faculty members. A gift to the researcher's university is made in support of his/her research and to promote excellence in teaching. Early career faculty must be within five years of their first tenure-track appointment. Recent grants include:


- Ding Yuan, University of Toronto
- Bharath Raghavan, University of Southern California
- Aurojit Panda, New York University
- Aruna Balasubramanian, Stony Brook University
- Taesoo Kim, Georgia Institute of Technology

Scholar-in-Residence

The Scholar-in-Residence (SiR) program brings together exceptional university faculty with VMware researchers for deeper collaboration over a specific time period. SiRs often takes place during a faculty member's summer break or sabbatical year. Collaboration focuses on research objectives mutually defined in advance. Recent scholars include leading faculty from:

- Carnegie Mellon University
- Bar Ilan University
- Technion
- Tel Aviv University
- University of North Carolina at Chapel Hill

For a listing of current open positions, visit our careers page.

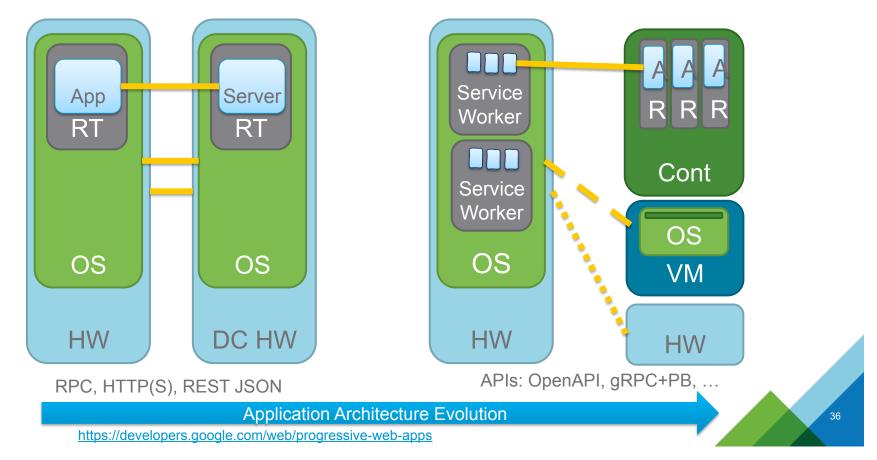
Thank You.

Darleen Fisher will email a copy of the slides.

Questions?

Dennis R Moreau Cybersecurity Information Architecture dmoreau@vmware.com

Abstract


The rapid growth in the adoption of modern application development and hosting technologies has brought with it, unprecedented levels of complexity, in terms of stack decoupling, instance dynamics, and system distribution. The underlying hosting platforms readily span multiple on-premise, co-hosted and cloud-hosted sites, easily extending across geographic and regulatory boundaries. Within individual platforms there is an accompanying convergence of computation, networking and storage capabilities, realized over common resources and shared fabrics. The result is that services, applications, platforms, infrastructure and even bare metal can all be consumed on demand at incredible scale.

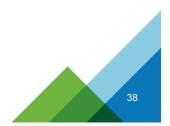
Unfortunately, complexity driven misconfiguration, recurrent outages and massive breaches are stimulating the growing realization that we must cultivate innovations that deliver much simpler, more efficient, more effective and more trustable information systems. The current turbulent tension between agility and manageability is challenging the conventional technological underpinnings of the management, operation and security of information systems hosted on modern platforms.

However, the very characteristics that precipitate these challenges also light the way forward in addressing them, making the modern hosting platforms ideal environments for supporting computing and networking research programs, across the innovation lifecycle including discovery, analysis, experimentation, prototyping, validation, and commercialization, extending to delivery and consumption of innovation at scale.

In this session we will consider emerging challenges and opportunities for modern information systems on hosting platforms, that are addressable by individual and collaborating researchers, and their teams. We will also consider the role of those platforms in facilitating innovation aimed at addressing these challenges, and how researcher engagement with platform providers and their user communities has evolved.

Client applications too, are more decoupled, dynamic, distributed

Looking Forward: Application footprint is dynamically expressed across client and backing services. Progressive Apps


	Application						
App Inst	App App App App App Part Ctl Ctl App App Part Ctl	App App µSVC µSVC µSVC					

- Identifiers: IPs, MACs, SSIDs increasingly inadequate need ARENs, Service Names,
- Behavior: State, Behavior increasingly dynamic wrt Client and backing Services
- Analytics: Due to Identifier and Behavior challenges, even correlation, ML are more challenged
- Actionability: What, Where and Why are all tougher to resolve into an actionable context

The Hosting Platform Role:

For Specific Persona and roles like Root Cause Analysis, Security Response, Behavioral Analytics.... provide authenticated access to:

- 1) Vertical dependencies across abstractions layers and dynamics
 - From Applications/Services, to Containers, to Pods, to VMs, to Servers, ...
- 2) Horizontal interactions/connections, end to end.
 - From clients to backing services
- 3) Context by Identifier.
 - Provenance, Templates, Instances, Tests, Attestations, Hosts, Policy Sets, Accounts, ...
 - Intention, Expectation, Observation

The decoupling, distribution and dynamics that cause this complexity, are also enablers of the solution...

- "... Cloud-native architectures should extend this idea (granular Defense in Depth) beyond authentication to include things like rate limiting and script injection. Each component in a design should seek to protect itself from the other components. This not only makes the architecture very resilient, it also makes the resulting services easier to deploy in a cloud environment, where there may not be a trusted network between the service and its users..."
 - Google: <u>https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it</u>
- Where coupling increases (Netflix's appropriate coupling) context enhancement reigns in complexity.
 - Netflix: <u>https://www.infoq.com/news/2019/01/netflix-evolution-architecture/</u>
- DevSecOps & Context
 - DoD DevSecOps Ref Design: <u>https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference</u> <u>%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583</u>

39

 Mitre Security & DevSecOps: <u>https://www.mitre.org/sites/default/files/publications/pr-19-0769-devsecops_security_test_autom_briefing.pdf</u>